

1

Enabling Robust Inverse Lithography with Rigorous Multi-Objective Optimization

Yang Luo, **Xiaoxiao Liang**, Yuzhe Ma*

Hong Kong University of Science and Technology (Guangzhou)

¹ Introduction

2 Method

³ Experiments

Printed contour

The optical proximity effect.

Optical Proximity Correction (OPC)

- Lithography: pattern transferring
- Optical proximity effect results in yield loss¹
- OPC: rectify mask patterns for compensation

Design Target Mask Printed Image

Light

Optical Proximity Correction (OPC)

- Rule based OPC²: empirical rules
- Model based OPC³ : iterative segment movement
- **ILT (Inverse Lithography Technique)** ⁴: inverse imaging
- Deep learning based methods⁵: target-mask-pair dataset

2Otto, et al. (1994). "Automated optical proximity correction: a rules-based approach." *In: Proc. SPIE. Vol. 2197.* 3Tetsuaki Matsunawa, et al. (2015). "Optical proximity correction with hierarchical Bayes model". *In: Proc. SPIE. Vol. 9426.* 4Gao, J. R., et al. (2014). "MOSAIC: Mask optimizing solution with process window aware inverse correction." *In: Proc. DAC (pp. 1-6).* 5Yang, H., et al. (2018). "GAN-OPC: Mask optimization with lithography-guided generative adversarial nets." *In: Proc. DAC (pp. 1-6).* 4

Process Variation

- Process Variation
	- DOF (Depth of Focus)
	- EL (Exposure Latitude)
- The mask quality may fluctuate across different corners

Printed images under two different process corners using the same mask.

Process Window

Process Window6

Characterizes the robustness against the process variation. Evaluated by measuring the variations among multiple process corners.

Edge Placement Error.

Process Window.

⁶Banerjee, S., et al. (2013). "ICCAD-2013 CAD contest in mask optimization and benchmark suite." *In: Proc. ICCAD (pp. 271-274).*

Lithography Modeling

• The forward lithography process

- SVD-approximated Hopkins model $8,9$
- Resist model

$$
\mathbf{I}(x, y) = \sum_{k=1}^{K} w_k | \vec{h}_k(x, y) \otimes \mathbf{M}(x, y) |^2,
$$

$$
\mathbf{Z}(x, y) = f_{\text{resist}}(\mathbf{I}) = \begin{cases} \mathbf{0}, & \mathbf{I}(x, y) \le I_{\text{th}}, \\ 1, & \text{otherwise.} \end{cases}
$$

M, I, Z : mask, aerial image, printed image

Standard ILT formulation:

$$
\begin{aligned}\n\min_{\mathbf{M}} \quad & \|\mathbf{Z} - \mathbf{Z}_t\|_2^2 \\
\text{s.t.} \quad & \mathbf{Z} = f_{resist}(\mathbf{I}) \\
& \mathbf{I} = f_{optic}(\mathbf{M}) \\
& \mathbf{M}(x, y) \in \{0, 1\}\n\end{aligned}
$$

9Cobb, N. B. (1998). "Fast optical and process proximity correction algorithms for integrated circuit manufacturing". *University of California, Berkeley.*

⁸Hopkins, H. H. (1951). "The concept of partial coherence in optics." *In: Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, Vol 208.*

Previous PV-aware ILT Methods

- Optimizes process variation band (PV band) for mask robustness
- PV band calculation uses **XOR**: non-differentiable
- Non-applicable for ILT methods

Previous PV-aware ILT Methods

- Minimize difference between wafer image variants and target pattern
- Previous PV-ILT mostly consider extreme process corners as "outermost" and "innermost"
- May not exist such corners

$$
\min_{\mathbf{M}} \quad \|\mathbf{Z} - \mathbf{Z}_t\|_2^2 \qquad \min_{\mathbf{M}} \quad \alpha \|\mathbf{Z} - \mathbf{Z}_t\|_2^2 + \beta \sum_{k=1}^n \|\mathbf{Z}_k - \mathbf{Z}_t\|^2
$$
\n
$$
\text{s.t.} \quad \mathbf{Z} = f_{resist}(\mathbf{I}) \qquad \qquad \text{s.t.} \quad \mathbf{Z} = f_{resist}(\mathbf{I})
$$
\n
$$
\mathbf{I} = f_{optic}(\mathbf{M}) \qquad \qquad \mathbf{I} = f_{optic}(\mathbf{M})
$$
\n
$$
\mathbf{M}(x, y) \in \{0, 1\}.
$$

 K

Motivation

Robust ILT

We consider all discrete process corners during rigorous optimization procedure.

- Direct optimization of process window
- Robust against process variations

IEEE/ACM

Problem Formulation

Robust ILT with Rigorous Multi-Objective Optimization

Given a target layout Z_t , the objective of robust inverse lithography technique is to obtain a mask M^* by solving the following Ndimensional **M**ulti-**O**bjective **O**ptimization **P**roblem (MOOP).

Accommodate process variations based on basic ILT solutions:

$$
\begin{aligned}\n\min_{\mathbf{M}} \quad & \mathcal{L}(\mathbf{M}) = [\mathcal{L}_1(\mathbf{M}), \mathcal{L}_2(\mathbf{M}), ..., \mathcal{L}_N(\mathbf{M})]^T \\
\text{s.t.} \quad & \mathcal{L}_n(\mathbf{M}) = \|\mathbf{Z}_n - \mathbf{Z}_t\|_2^2, \quad \forall n \in \{1, 2, ..., N\}, \\
& \mathbf{Z}_n = f_{resist}(\mathbf{I}_n), \quad \forall n \in \{1, 2, ..., N\}, \\
& \mathbf{I_n} = \sum_{k=1}^K w_k \mid \vec{h}_{n_k} \otimes \mathbf{M} \mid^2, \quad \forall n \in \{1, 2, ..., N\}, \\
& \mathbf{M}(x, y) \in \{0, 1\},\n\end{aligned}
$$

Robust ILT

Optimization Perspective

Non-trivial10, due to a complicated priority balance, avoiding *Pareto dominated point*

Computational Cost Perspective

Introduces **more computation overhead** on lithography simulation and backward optimization

Low scalability

10Emmerich, M. T., & Deutz, A. H. (2018). "A tutorial on multi-objective optimization: fundamentals and evolutionary methods." *In: Natural computing. Vol. 17.*

11Yu, T., Kumar, et al. (2020). "Gradient surgery for multi-task learning." *In: NIPS, Vol. 33.*

12Liu, L., et al. (2021). "Towards impartial multi-task learning." *In: ICLR.*

Robust ILT

Optimization Perspective

Non-trivial, due to a complicated priority balance, avoiding Preto dominated point

Propose a **uniform gradient optimization method**

Computational Cost Perspective

Introduces more computation overhead on lithography simulation and backward optimization

Low scalability

Improve the algorithm efficiency from both the **implementation** and **algorithm** level

Objective sampling strategy

Parallel implementation with multi-GPUs

Uniform Gradient Direction

- Explicitly handle the diverged directions among different gradients
- Solve gradient conflicts by projecting each gradient onto the orthogonal direction of the others
- Alleviate projection ordering bias by random perturbation

Uniform Gradient Direction

Normalize aggregated gradient to obtain uniform update direction

Gradient Magnitude-balancing

Observation

There are significant discrepancies between the printed images and the target layout, and some gradients have large magnitudes.

- Current step size: the maximum magnitude of gradients
	- While small step size is to maintain performance when all gradient magnitudes diminish

Acceleration

• Through objective sampling, in each ILT iteration:

- Compute sub-gradients $G_{1\sim N}$
- For corner n from 0 to N :
	- **Sample** M corners over the index set $\{1, 2, ..., N\}$
	- For in **sampled set**:
		- Obtain the uniform gradient direction using G_n and G_m
	- Sum the M directions
- Magnitude $=$ max $||G_{1\sim N}||$
- Obtain the final aggregated gradient with direction and magnitude

Acceleration

- Through multiple GPUs parallelization
	- Parallel lithography forward simulation and backward propagation under various process conditions

Comparison with Previous Methods

- Benchmark: ICCAD2013 CAD Contest⁶ (2048 \times 2048)
- Comparison between ours and previous SOTA methods on EPE
	- MOSAIC⁴
	- Deep learning-based method: NeuralILT¹³, GANOPC⁵ and CFNOILT¹⁴

13Jiang, B., et al. (2020). "Neural-ILT: Migrating ILT to neural networks for mask printability and complexity co-optimization." *In: Proc ICCAD (pp. 1-9).*

14Yang, H., & Ren, H. (2023). "Enabling scalable AI computational lithography with physics-inspired models." *In: Proc. ASPDAC (pp. 715-720).*

Overall Runtime

 Comparison between previous SOTA methods and ours, w. and w.o. multiple GPUs acceleration

Objective Sampling

- Trade-off between performance and runtime
- Robust against sampling: EPE deviation remains relatively constant as the sampling ratio increasing

Runtime with objective sampling. Mask quality with objective sampling.

Conclusion

- A rigorous MOOP solution for robust ILT, explicitly optimizes all process corners
- A uniform gradient computation approach
- Efficiency improvement: algorithm level & implementation level
- Achieves substantial process window improvement

THANK YOU!

First author: yluo208@connect.hkust-gz.edu.cn Corresponding author: yuzhema@hkust-gz.edu.cn