

Enabling Robust Inverse Lithography with Rigorous Multi-Objective Optimization

Yang Luo, Xiaoxiao Liang, Yuzhe Ma*

Hong Kong University of Science and Technology (Guangzhou)

Introduction

Method

S Experiments

Printed Image

Optical proximity effect results in yield loss¹

Mask

The optical proximity effect.

• OPC: rectify mask patterns for compensation

Design Target

¹Pan, D. Z., et al. (2013). "Design for manufacturing with emerging nanolithography." *In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.*

Optical Proximity Correction (OPC)

Light

Optical Proximity Correction (OPC)

- Rule based OPC²: empirical rules
- Model based OPC³ : iterative segment movement
- **ILT (Inverse Lithography Technique)** ⁴: inverse imaging
- Deep learning based methods⁵ : target-mask-pair dataset

²Otto, et al. (1994). "Automated optical proximity correction: a rules-based approach." *In: Proc. SPIE. Vol. 2197.* ³Tetsuaki Matsunawa, et al. (2015). "Optical proximity correction with hierarchical Bayes model". *In: Proc. SPIE. Vol. 9426.* ⁴Gao, J. R., et al. (2014). "MOSAIC: Mask optimizing solution with process window aware inverse correction." *In: Proc. DAC (pp. 1-6).* ⁵Yang, H., et al. (2018). "GAN-OPC: Mask optimization with lithography-guided generative adversarial nets." *In: Proc. DAC (pp. 1-6).*

Process Variation

- Process Variation
 - DOF (Depth of Focus)
 - EL (Exposure Latitude)
- The mask quality may fluctuate across different corners

Printed images under two different process corners using the same mask.

Process Window

Process Window⁶

Characterizes the robustness against the process variation. Evaluated by measuring the variations among multiple process corners.

Edge Placement Error.

-10 Ν Ν Y Ν N Y 0 Ν Y Y N 10 Ν Ν Y Ν Ν

95

90

EL(%)

100

105

110

Process Window.

⁶Banerjee, S., et al. (2013). "ICCAD-2013 CAD contest in mask optimization and benchmark suite." In: Proc. ICCAD (pp. 271-274).

Lithography Modeling

• The forward lithography process

- SVD-approximated Hopkins model^{8,9}
- Resist model

$$\mathbf{I}(x, y) = \sum_{k=1}^{K} w_k | \vec{h}_k(x, y) \otimes \mathbf{M}(x, y) |^2,$$
$$\mathbf{Z}(x, y) = f_{resist}(\mathbf{I}) = \begin{cases} \mathbf{0}, & \mathbf{I}(x, y) \leq I_{th}, \\ 1, & \text{otherwise.} \end{cases}$$

M, I, Z : mask, aerial image, printed image

• Standard ILT formulation:

$$\min_{\mathbf{M}} \|\mathbf{Z} - \mathbf{Z}_t\|_2^2$$
s.t.
$$\mathbf{Z} = f_{resist}(\mathbf{I})$$

$$\mathbf{I} = f_{optic}(\mathbf{M})$$

$$\mathbf{M}(x, y) \in \{0, 1\}$$

⁸Hopkins, H. H. (1951). "The concept of partial coherence in optics." *In: Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, Vol 208.*

⁹Cobb, N. B. (1998). "Fast optical and process proximity correction algorithms for integrated circuit manufacturing". *University of California, Berkeley.*

Previous PV-aware ILT Methods

- Optimizes process variation band (PV band) for mask robustness
- PV band calculation uses **XOR**: non-differentiable
- Non-applicable for ILT methods

PV band measurement

Previous PV-aware ILT Methods

- Minimize difference between wafer image variants and target pattern
- Previous PV-ILT mostly consider extreme process corners as "outermost" and "innermost"
- May not exist such corners

K

Motivation

Robust ILT

We consider all discrete process corners during rigorous optimization procedure.

- Direct optimization of process window
- Robust against process variations

Robust ILT.

Problem Formulation

Robust ILT with Rigorous Multi-Objective Optimization

Given a target layout Z_t , the objective of robust inverse lithography technique is to obtain a mask M^* by solving the following N-dimensional **M**ulti-**O**bjective **O**ptimization **P**roblem (MOOP).

• Accommodate process variations based on basic ILT solutions:

$$\begin{split} \min_{\mathbf{M}} \quad \mathcal{L}(\mathbf{M}) &= [\mathcal{L}_{1}(\mathbf{M}), \mathcal{L}_{2}(\mathbf{M}), ..., \mathcal{L}_{N}(\mathbf{M})]^{T} \\ \text{s.t.} \quad \mathcal{L}_{n}(\mathbf{M}) &= \|\mathbf{Z}_{n} - \mathbf{Z}_{t}\|_{2}^{2}, \quad \forall n \in \{1, 2, ..., N\}, \\ \mathbf{Z}_{n} &= f_{resist}(\mathbf{I}_{n}), \quad \forall n \in \{1, 2, ..., N\}, \\ \mathbf{I}_{\mathbf{n}} &= \sum_{k=1}^{K} w_{k} \mid \vec{h}_{n_{k}} \otimes \mathbf{M} \mid^{2}, \quad \forall n \in \{1, 2, ..., N\}, \\ \mathbf{M}(x, y) \in \{0, 1\}, \end{split}$$

Robust ILT

Optimization Perspective

Non-trivial¹⁰, due to a complicated priority balance, avoiding *Pareto dominated point*

Computational Cost Perspective

Introduces **more computation overhead** on lithography simulation and backward optimization

Low scalability

¹⁰Emmerich, M. T., & Deutz, A. H. (2018). "A tutorial on multi-objective optimization: fundamentals and evolutionary methods." *In: Natural computing. Vol. 17.*

¹¹Yu, T., Kumar, et al. (2020). "Gradient surgery for multi-task learning." *In: NIPS, Vol.* 33.

¹²Liu, L., et al. (2021). "Towards impartial multi-task learning." In: ICLR.

Robust ILT

Optimization Perspective

Non-trivial, due to a complicated priority balance, avoiding *Preto dominated point*

Propose a **uniform gradient** optimization method

Conflict gradients
directionImage: Conflict gradient directionDominated
gradients scaleImage: Conflict gradient direction

Computational Cost Perspective

Introduces **more computation overhead** on lithography simulation and backward optimization

Low scalability

Improve the algorithm efficiency from both the **implementation** and **algorithm** level

Objective sampling strategy

Parallel implementation with multi-GPUs

Uniform Gradient Direction

- Explicitly handle the diverged directions among different gradients
- Solve gradient conflicts by projecting each gradient onto the orthogonal direction of the others
- Alleviate projection ordering bias by random perturbation

Uniform Gradient Direction

• Normalize aggregated gradient to obtain uniform update direction

Gradient Magnitude-balancing

Observation

There are significant discrepancies between the printed images and the target layout, and some gradients have large magnitudes.

- Current step size: the maximum magnitude of gradients
 - While small step size is to maintain performance when all gradient magnitudes diminish

Acceleration

• Through objective sampling, in each ILT iteration:

- Compute sub-gradients $G_{1\sim N}$
- For corner *n* from 0 to *N*:
 - **Sample** *M* corners over the index set $\{1, 2, ..., N\}\setminus n$
 - For *m* in **sampled set**:
 - Obtain the uniform gradient direction using G_n and G_m
 - Sum the *M* directions
- Magnitude = $\max \|G_{1 \sim N}\|$
- Obtain the final aggregated gradient with direction and magnitude

Acceleration

- Through multiple GPUs parallelization
 - Parallel lithography forward simulation and backward propagation under various process conditions

Comparison with Previous Methods

- Benchmark: ICCAD2013 CAD Contest⁶ (2048×2048)
- Comparison between ours and previous SOTA methods on EPE
 - MOSAIC⁴
 - Deep learning-based method: NeuralILT¹³, GANOPC⁵ and CFNOILT¹⁴

Design	MOSAIC				NeuralILT			GANOPC			CFNOILT			Ours						
	Nominal	Worst	Mean	Std	Nominal	Worst	Mean	Std	Nominal	Worst	Mean	Std	Nominal	Worst	Mean	Std	Nominal	Worst	Mean	Std
Case 1	8	23	15	5.02	8	19	13.83	3.92	17	41	26.33	9.71	17	39	24.83	8.26	6	13	8.67	3.33
Case 2	0	11	5.5	3.62	8	25	15.67	6.89	4	24	14.33	8.64	17	49	27.83	13.12	0	6	2.5	2.26
Case 3	49	60	49.33	6.25	42	62	50.5	8.04	47	74	56.17	10.65	67	98	76.67	12.27	47	61	49	7.46
Case 4	2	5	3	1.26	1	5	2.5	1.64	2	10	4.67	2.94	9	27	13.67	7.94	1	2	1.83	0.41
Case 5	0	7	1.5	2.74	2	5	3.67	1.21	2	7	3.17	2.14	4	47	15.67	17	0	3	0.67	1.21
Case 6	3	4	1.67	1.86	4	5	3.5	1.22	3	17	8.67	5.24	3	41	17.5	14.39	2	3	1.67	0.82
Case 7	2	19	5.83	7.86	0	6	1.67	2.34	0	18	4.17	6.88	0	21	5	8	0	16	3.17	6.4
Case 8	0	0	0	0	0	4	1.17	1.47	2	11	4.33	4.23	1	13	5.83	4.58	0	1	0.17	0.41
Case 9	1	6	2.5	1.87	4	18	9.17	5.81	6	25	15	7.56	7	24	13.17	5.78	0	3	1.17	1.17
Case 10	0	0	0	0	4	5	2.83	2.04	5	14	7	4.86	0	3	0.83	1.33	0	0	0	0
Average	6.5	13.5	8.43	-	7.3	15.4	10.45	-	8.8	24.1	14.38	-	12.5	36.2	20.1	-	5.6	10.8	6.89	-

¹³Jiang, B., et al. (2020). "Neural-ILT: Migrating ILT to neural networks for mask printability and complexity co-optimization." *In: Proc ICCAD (pp. 1-9).*

¹⁴Yang, H., & Ren, H. (2023). "Enabling scalable AI computational lithography with physics-inspired models." *In: Proc. ASPDAC* (*pp. 715-720*).

Overall Runtime

 Comparison between previous SOTA methods and ours, w. and w.o. multiple GPUs acceleration

Decign	MOSAIC	NeuralII T	CANOPC	CENOII T	Ours			
Design	MOSAIC	INCUTAILL I	GANOIC	CINCILI	Ori.	Accel.		
Case1	7.50s	4.92s	6.19s	5.46s	41.40s	17.72s		
Case2	7.55s	5.25s	5.75s	5.11s	41.70s	15.16s		
Case3	7.45s	4.95s	6.05s	5.13s	41.03s	15.13s		
Case4	7.48s	5.12s	5.82s	5.26s	41.43s	16.28s		
Case5	7.66s	4.94s	5.88s	5.32s	41.42s	16.10s		
Case6	7.60s	4.90s	5.89s	5.51s	41.47s	14.96s		
Case7	7.52s	4.92s	5.72s	5.05s	42.04s	15.87s		
Case8	7.56s	5.08s	5.77s	5.12s	41.19s	16.05s		
Case9	7.78s	5.17s	5.84s	5.00s	41.84s	14.97s		
Case10	8.03s	4.87s	5.82s	4.95s	42.44s	16.42s		
Average	7.61s	5.01s	5.87s	5.19s	41.60s	15.86s		

Objective Sampling

- Trade-off between performance and runtime
- Robust against sampling: EPE deviation remains relatively constant as the sampling ratio increasing

Runtime with objective sampling.

Mask quality with objective sampling.

Conclusion

- A rigorous MOOP solution for robust ILT, explicitly optimizes all process corners
- A uniform gradient computation approach
- Efficiency improvement: algorithm level & implementation level
- Achieves substantial process window improvement

THANK YOU!

First author: yluo208@connect.hkust-gz.edu.cn Corresponding author: yuzhema@hkust-gz.edu.cn